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Susceptibility of the Kagomé Lattice Ising Model
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We explicitly calculate the zero-field magnetic susceptibility of the anisotropic
Kagomé lattice Ising model on two different varieties of the parameter space.
One of them is the limit H =0 of the solubility condition, obtained in a previous
paper by Giacomini, for the model with magnetic fiecld. The other one is the
disorder variety of the model, for which a dimensional reduction occurs. These
varieties do not contain any nontrivial critical behavior of the model. A func-
tional relation is also established, which relates the zero-field susceptibility for
ferromagnetic and competing interactions.
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The exact expression for the initial magnetic susceptibility is not known for
any of the two-dimensional Ising models, except in very special cases: the
superexchange model of Fisher'" and the triangular'® and checkerboard®’
lattices restricted to the disorder variety, where the model decouples and
becomes unidimensional.

In the critical region of the square lattice model, a large amount of
information on the susceptibility has been obtained in recent years.' ¥
These results have been found, in general, by combining the fluctuation-
dissipation theorem with the many exact results that have been accumu-
fated for the two-spin correlation functions.

However, an explicit expression for the susceptibility at all
temperatures obtained through the fluctuation-dissipation theorem has not
been found so far.

In this work, the explicit expression for the initial (zero-field) suscep-
tibility of the anisotropic Kagomé lattice Ising model (see Fig. 1) is
obtained when a special relation between the three interaction parameters
of the model is satisfied. This result is derived from the relation established
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in a previous paper’® between the partition functions of the anisotropic
Kagomé and honeycomb lattice Ising models with a magnetic field. In
particular, for the free energy per site, this relation is as follows:

fKag(Kls K25 KB’ H) =%10g(A1A2A3) + %log Rz + %fhoney(Ll’ L25 L3: I—_I)

where fy,, = (1/3N)log Zy,, and fi e, = (1/2N)log Z,,,,. Here 3N and
2N are the numbers of sites of the Kagomé and honeycomb lattices,
respectively. The parameters L,, H, A,, and R are given in terms of K, and
H as follows:

exp(4L,) =cosh(2M,+ H) cosh(2M,— H)[cosh(H)] 2, i=1,2,3 (2a)

exp(4 fl cosh(2M,;+ H) [cosh(2M,— H)] ! (2b)
sinh(2K,) sinh(QM,) = /e, i=1,2,3 (2¢)
R*=(«?/2) sinh(2K,) sinh(2K,) sinh(2K;) (2d)

A;=2[cosh(2M,+ H) cosh(2M,— H) cosh®*(H)]"*, i=1,2,3  (2e)
with
=(1-)(1-5)(1~-1)
X [16(1+ 2115132+ tat3) (1, + t3t )25+ 111,)] 12 (2f)

and ¢, =tanh(K,). Here, M, M,, and M, are auxiliary parameters, defined
in terms of K, K,, and K, by means of Egs. (2c) and (2f). Moreover,
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Fig. 1. An elementary cell of the Kagomé lattice, showing the interaction parameters. The
Ising spins localized at different sites are also indicated.
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the parameters L,, L,, and L, are the interaction coefficients of the
honeycomb lattice model.

From (1) and (2) one can easily deduce a relation between the initial
magnetic susceptibility of both models. Taking into account that

% =% =0, i=1,23 (3a)
0H|y_o OH|y_o
0°H
FT7Ei P (3b)
o0H 13
b7 =3 Y tanh(2M,) (3¢)
H=0 i=1
0L,
6H21 H‘Oz —Etanh2(2Ml-) (3d)
1 8%4, 1
— =1—=tanh*(2M, 3
402, 5 tan (2M)) (3e)
we obtain
1 3
XO Kag(Kl’ K29 K3 _g Z tanh
1 > afh(L15L2:L3 FI:O)
- tanh?( ’
73 ,Zl [ anh™(2M)) oL, }
3 2
g[z tanh(2M)) } Yomns(Lis Lo L) (4)
where
2
0 fxael Ky Ky, Ky, H
XO Kag — e Iasz 2 ) (53)
H=0
azfone (L 7L :L :H)
XO,honey = h . alﬁZZ 2 o (Sb}
When H =0 the parameters L; are given by
exp(2L;) =cosh(2M ) (6)

As can be seen from (4), if the condition

3
Y tanh(2M,)=0 (7)

i=1
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is imposed, the coefficient of yg honey becomes null and y, k., can be exactly
evaluated, the nearest neighbor correlation functions

afhoney(Lla LZ: L3’ I__I: 0)/6141

being known exactly for arbitrary values of L, L,, L,.
Taking into account (2¢), Eq. (7) imposes the following condition on
the interaction parameters K;:

1 1
" <tanh(2K1) + tanh(2K,) tanh(2K;)
. 1
tanh(2K,) + tanh(2K;) tanh(2K,)

i
T fanh(2K,) + tanh(2K.) tanh(2K2)> =0

(8)

which factorizes into two independent equations.
The first of these is 1/o =0, which, explicitly written by using (2f),
reads as follows:

I+t 66)(t )t + 1)+ 1,1,)=0 )

for finite values of parameters K.

The surface defined by (9) is the disorder variety of the model with
zero field."'® On this variety there is a dimensional reduction. The partition
function behaves as a zero-dimensional model and the correlation functions
have a one-dimensional behavior. Moreover, when Eq. (9) is satisfied, we
have

tanh(2M,) =0,  cosh?(2M,) =1 (10)

The corresponding model on the honeycomb lattice is trivial: two
interaction parameters become zero and the third is equal to in/2. For this
case the free energy of the honeycomb lattice model is singular, and we
have an indeterminate limit in expression (4). In consequence, it is not
possible to calculate y, k., on the disorder variety by this method. The
explicit expression of y,x,, on this variety can be obtained by the
decimation method. We explain this method in the Appendix, and we
quote here only the final expression for y, on the disorder variety:

:l+g(1 +1) L+ )=t )2 (1 4+t t,+ 1282
foxe =373 (1= 1)1 = )1+ 1713)

(11)
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with

ty= —1,1, (12)

Other independent solutions can be obtained by using the invariance
of the free energy and condition (9) with respect to permutations of ¢, #,,
and t,. This expression is only valid for real values of the interaction
parameters K,, K,, K;, as explained in the Appendix. The simple, purely
algebric, character of (11) and the absence of singularities (with the excep-
tion of the trivial one for K, or K, equal to co) are consequences of the
dimensional reduction that occurs on the variety (9).

The second possibility for satisfying Eq. (8) is to impose the following
condition on the parameters X;:

1
tanh(2K, ) + tanh(2K,) tanh(2K,)

i
* anh(2K,) + tanh(2K,) anh(2K,)

1
T anh(2K,) + tanh(2K,) tanh(2K,)

=0 (13)

It can be shown that this is just the limit H =0 of the solubility condition
found in ref. 15 for the Kagomé lattice Ising model with magnetic field. In
contrast to (9), this equation does not factorize into a set of nonsymmetric
conditions, and it does not impose a dimensional reduction on the system.

It is evident that there are no solutions of Eq.(13) in the ferro-
magnetic region, where K,, K,, and K, are positive. For the “physical”
solutions of (13), the following cases are possible: (i) the three interactions
are negative; (ii) one is positive and the other two are negative; (iit) one
interaction is negative and the other two are positive. Hence, the system
can be in the antiferromagnetic “frustrated” region [case (i)], or in a
region of competing interactions with or within “frustration” [cases (iii)
and (i1), respectively]. By contrast, when the disorder condition (9) is
satisfied, the system is always “frustrated.”

Unfortunaly, the surface (13) has no intersection, for the physical
(real) region of the parameter space, with the critical variety of the model.
Taking into account (4), (6), and the explicit expression of fyne,(L;, L,
L,, H=0) (see, for example, ref 17), we finally obtain the following
expression for g, x,, on the surface (13):



1132 Debauche and Giacomini

XO,Kag _ # J-Ozn J\:n

N A—Bcosw,—Ccosw,—Dcos(w; +w,)
1+C,C,C3—85,8;5¢c08 0, — 8555, cos w,— S5, cos(w; + w,)

do dow,
(14)
where

A=(C+CC)(C; =8+ (Cr+ CC)(Cr— S,) +(C3+ C,Co)(C5 — S5)
BZ(C1_S1)C1S2S3’ C=(C2—S2)C253S1a DZ(C3_S3)C3S152

(15)
with
1 202 sinh? 2K, + 1

C,=cosh 2L, =~ : ,

§ OO = L sinh 2K, (1 + a2 sinh? 2K )2 )
1 1
S,=sin2L,=
sin 2 o sinh 2K, (1 + o sinh? 2K,)"

The integral expression (14) can be calculated in terms of elliptic functions
of the first and third kinds, but the resulting expressions are very com-
plicated, and do not give additional insight when compared to the integral
representation.

In general, if the initial susceptibility is known for the Kagomé lattice,
it can also be calculated for the honeycomb lattice and, in turn, for the
triangular lattice. (For a review see ref 17.) Unfortunately, the same
mechanism that enables us to obtain expression (14) [condition (13)] rules
out the possibility of extending our result to other two-dimensional lattices.

Let us now return to the general case of the relation between y, k.,
and Yo honeys given by (4). From this equation, a relation can be obtained
between yo x.(Ki, K>, K3) and yg k. (K, —K,, —K;). If we change M,
by —M,, Eq. (4) becomes

XO(KIa _K2> _KB)

12 12
=1--E Y tanh?(2M) —5 D [tanh2(2M,-)

afh(Lb LZ» L35 FI:O)
oL,

1
+ A [ —tanh(2M ) + tanh(2M,) + tanh(2M3) 1% %o honey(L1» L2, L)

(17)



Kagomé Lattice Ising Model 1133

where we have taken into account that L, L,, and L, are invariant by the
change of sign of M.
From Egs. (4) and (17) it can be deduced that

XO,Kag(Kla —K,, —Kj3)

1_p 2n a2m
N 127[2 J() j0
A—Bcosw,; — Ccosw,— D cos(w; +w,)

X 1+C,C,C3—8,5;c08w; — S35, cos w, — S5, cos(w; + w,)
X dw; dw, + pXO,Kag(Kla K,, K5) (18)

where p is given by

_ [—tanh(2M,) + tanh(2M,) + tanh(2M,)]? 19
P = "[tanh(2M,) + tanh(2M,) + tanh(2M,) ] (19)

This functional relation for yg x., is valid for arbitrary values of K, X,
K,, with the exception of the values that satisfy condition (7). If K|, K,,
K, are all positive and on the critical variety of the model, (18) enables us
to obtain information on the critical behavior of the susceptibility on a
region of competing interactions (the critical variety is invariant with
respect to the change of sign of two of the three interaction parameters). It
is deduced from Eq. (18) that the dominant singularity of y, x..(K;, —K,,
—K;) is the same as that of y, x..(K;, K,, K;), but the correction terms
are different, owing to the contribution of the integral term in the right-
hand side of (18). These contributions are of the form ”log(z), where
t=(T,—T)/T. is the reduced temperature and » is an integer.

To summarize, in this paper we have found exact expressions for the
zero-field susceptibility of the anisotropic Kagomé lattice Ising model. The
first expression, given by (11), is valid on the disorder variety (12), and the
second one, given by (14), holds on the variety defined by condition (13).
Also, we have found a functional relation for y, k.., given by Eq. (18). This
relation enables us to obtain information about the critical behavior of the
susceptibility in a region of competing interactions of the parameter space
of the model.

APPENDIX. SUSCEPTIBILITY OF THE KAGOME LATTICE
ISING MODEL ON THE DISORDER VARIETY

In order to obtain the expression of the susceptibility on the disorder
variety, we apply a local criterion, found be means of a decimation method,
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in refs. 16 and 18. This local criterion can be stated as follows: when the
following condition is satisfied

Y, W(0,,0,,05,0405)=4 (A1)

71,002,093

where A is a constant independent of o, and o5, then the partition function
per site in the thermodynamic limit is given by

Z1/3N — /11/3 (A2)

Here, W(o,, 0,,05,0,4,0s5) is the Boltzmann weight associated to the
elementary cell of the Kagomé lattice shown in Fig. 1, and is given by
Wioy,03,03,04 05)
=exp{K,(s,05+0;0,)
+ K,(0,03+0505)+ Ks(a,0,+0,405)
+Ho,+ H2(6,+0,+0,+05)
+ H(0,—04)+ Hy0,—05)} (A3)

where H, and H, are auxiliary fields that are canceled when the Boltzmann
weights associated to all cells of the lattice are multiplied away. These
auxiliary fields are introduced in order to verify condition (A1) with the
minimal constraints on the parameters of the model.

From (Al) and (A3), by giving all possibles values to g, and o5, we
obtain the following equations:

cosh(2K, + 2K, + H)e* 324 4 cosh( H )e?ks + 21+ 2H:

2
+ Y cosh(2K;+ H)e" =}
i jiij=1

cosh(H )5 —2H1 -2 4 cosh(2K, + 2K, — H ) e~ 21

+ i cosh(2K,— H)e 7 =} (A4)
i#ji,j=1
cosh(2K; — 2K, + H)e > + cosh(H)e %+ 21 =21
+cosh(2K, + H)e" "2 4 cosh(2K, — H)e 77?1 =
cosh(H )e~2K3=2M1+2M: | cosh(—2K, + 2K, + H)e ™%
+cosh(2K, + H)e"” ~ ' 4 cosh(2K, — H)e " 2=}
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The zero-field susceptibility is given by

_10%/0H? — (34/0H)?

XO,Kag - 3/12

(A5)

H=0

Explicit expression for A, d4/0H, and 8° A/0H? can be found, for the case
H=0, from Eqgs. (A4). After a very lengthly algebra we found the final
expression given by Eq. (12) in the text and valid on the variety (13). Other
independent solutions can be obtained by using the permutation symmetry
of the model with respect to K, K,, K;. This type of disorder solution is
valid only for real values of the parameters of the model, as is discussed in
ref. 18.
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