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Susceptibility of the Kagom  Lattice Ising Model 
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We explicitly calculate the zero-field magnetic susceptibility of the anisotropic 
Kagom6 lattice Ising model on two different varieties of the parameter space. 
One of them is the limit H = 0 of the solubility condition, obtained in a previous 
paper by Giacomini, for the model with magnetic field. The other one is the 
disorder variety of the model, for which a dimensional reduction occurs. These 
varieties do not contain any nontrivial critical behavior of the model. A func- 
tional relation is also established, which relates the zero-field susceptibility for 
ferromagnetic and competing interactions. 
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The exact  express ion for the ini t ial  magne t ic  suscept ibi l i ty  is not  k n o w n  for 
any  of the two-d imens iona l  Ising models ,  except  in very special  cases: the 
superexchange  mode l  of F i she r  (1} and  the t r i angu la r  (2) and  checke rboa rd  (31 

latt ices res t r ic ted to the d i so rde r  variety,  where the mode l  decouples  and 
becomes  unid imens ional .  

In  the cri t ical  region of the square  lat t ice model ,  a large a m o u n t  of  
in fo rmat ion  on the suscept ibi l i ty  has been ob t a ined  in recent  years. (4 14) 
These results  have been found, in general ,  by combin ing  the f luctuat ion-  
d i ss ipa t ion  theorem with the m a n y  exact  results  tha t  have been accumu-  
la ted for the two-spin  cor re la t ion  functions.  

However ,  an  explici t  express ion for the suscept ibi l i ty  at  all 
t empera tu res  ob ta ined  t h rough  the f luc tua t ion-d i ss ipa t ion  theorem has not  
been found so far. 

In  this work,  the explici t  express ion for the ini t ial  (zero-field) suscep- 
t ibi l i ty of  the an i so t rop ic  K a g o m 6  lat t ice Ising mode l  (see Fig. 1) is 
ob ta ined  when a special  re la t ion  between the three in te rac t ion  pa rame te r s  
of the mode l  is satisfied. This  result  is der ived from the re la t ion  es tabl i shed  
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in a previous paper (~5) between the partition functions of the anisotropic 
Kagom6 and honeycomb lattice Ising models with a magnetic field. In 
particular, for the free energy per site, this relation is as follows: 

fKag(K~, K2, K3, H ) =  �89 �89 2 2 R + 5fhoney(Zl ,  L2, Z3, H) 

where ficag = (1/3N) log ZKag and fhoney = (I/2N) log Z h o n e y ,  Here 3N and 
2N are the numbers of sites of the Kagom6 and honeycomb lattices, 
respectively. The parameters Li, /q, Ai, and R are given in terms of Ki and 
H as follows: 

exp(4Li) = cosh(2Mi+ H)  c o s h ( 2 M i -  H)  [cosh(H)]  2, i =  1, 2, 3 (2a) 

3 

exp(4Er) = [ I  cosh(2M~ + H) [cosh(2M~-  g ) ]  ~ (2b) 
i - - 1  

sinh(2Ki) sinh(2M~)= l/s, i =  1, 2, 3 (2c) 

R 2 = (c~2/2) sinh(2K1) sinh(2K2) sinh(2K3) (2d) 

A~=2[cosh(2M~+H)cosh(2Mi-H)cosh2(H)] ~/4, i = 1 , 2 , 3  (2e) 

with 

= (1-- t~ ) (1 -  t 2 ) (1 -  t3 2) 

x[16(l+tlt2t3)(tlWt2t3)(t2+t3tl)(t3+tlt2)] 1/2 (2f) 

and ti = tanh(K~). Here, M1, M2, and M3 are auxiliary parameters, defined 
in terms of K1, K2, and g 3 by means of Eqs. (2c) and (2f). Moreover, 

K3 
0-1 A ~ 0- 2 

K I K2 

0-3 

(T5 0-4 
K3 

Fig. 1. An elementary cell of the Kagom6 lattice, showing the interaction parameters. The 
Ising spins localized at different sites are also indicated. 
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the parameters L l, L2, and L3 are the interaction coefficients of the 
honeycomb lattice model. 

From (1) and (2) one can easily deduce a relation between the initial 
magnetic susceptibility of both models. Taking into account that 

c~Li H=o = ~?Ai 
OH 0H H=O=0' i =  1, 2, 3 (3a) 

0H2 H= 0 = 0 (3b) 

0_~_ H=o = ~ , ~ 1  t anh (2M/ ) -=  (3c) 

~ 2 L  i 1 2 
H2 H=o = --2 tanh (2M~) (3d) 

1 1 02Ai = 1 - ~ tanh2(2Mi) (3e) 
Ai OH2 H=O 

we obtain 

)~o, Kag(K1, K2, K3)---- 1 - -g  tanh2(2M~) 
i= l  

where 

1 ~ [  0f~(/~,/~, L~, B= o) 1 --5z~1.= tanh2(2M~) c?Li 

1 3 2 
+ g  [i__~ 1 tanh(2M/)]  ZO, hon~y(L1, L2, L3) (4) 

~2fKag(gl ,  g 2 ,  g 3 ,  H )  H=0 (5a)  
)~0, Kag -- ~H 2 

632fhoney(L1, L2, L3, /q)  H=o (5b) 
)~0, honey -- i~/~ 2 

When H =  0 the parameters Li are given by 

exp(2Li) = cosh(2Mi) 

As can be seen from (4), if the condition 

3 
tanh(ZMe) = 0 

i= l  

(6) 

(7) 
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is imposed, the coefficient of Z0,honey becomes null and Z0, Kag c a n  be exactly 
evaluated, the nearest neighbor correlation functions 

c3fhoney(L1, L2, L3, /~ = O)/OL~ 

being known exactly for arbitrary values of L1, L2, L3. 
Taking into account (2c), Eq. (7) imposes the following condition on 

the interaction parameters K~: 

,( 
~ tanh(2K1) + tanh(2K2) tanh(2K3) 

1 q 
tanh(2K2) + tanh(2K3) tanh(2K1) 

-t tanh(2K3) + tanh(2K~) tanh(2K2) = 0 (8) 

which factorizes into two independent equations. 
The first of these is 1/c~ = 0, which, explicitly written by using (2f), 

reads as follows: 

(1 + t 1 t2t3)(t  I + t 2 t3)(t2 + t, t3)(t 3 + t 1 t2) = 0 (9) 

for finite values of parameters K~. 
The surface defined by (9) is the disorder variety of the model with 

zero field. (16) On this variety there is a dimensional reduction. The partition 
function behaves as a zero-dimensional model and the correlation functions 
have a one-dimensional behavior. Moreover, when Eq. (9) is satisfied, we 
have 

tanh(2Mi) = 0, cosh2(2Mi) = 1 (lo) 

The corresponding model on the honeycomb lattice is trivial: two 
interaction parameters become zero and the third is equal to irc/2. For this 
case the free energy of the honeycomb lattice model is singular, and we 
have an indeterminate limit in expression (4). In consequence, it is not 
possible to calculate Zo, Kag on the disorder variety by this method. The 
explicit expression of Zo, icag on this variety can be obtained by the 
decimation method. We explain this method in the Appendix, and we 
quote here only the final expression for Zo on the disorder variety: 

1 2 (1 + tl)(1 + t2)(1-- t lt2)2(1 + t , t  2 + t~t~) 

Z~ = 3 + 3  ( 1 _ t l ) ( 1 _ t 2 ) ( l + t 2 t ~ )  2 
(11) 
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with 

t3= --tlt2 (12) 

Other independent solutions can be obtained by using the invariance 
of the free energy and condition (9) with respect to permutations of tl, t2, 
and t 3. This expression is only valid for real values of the interaction 
parameters KI, /(2, K3, as explained in the Appendix. The simple, purely 
algebric, character of (11) and the absence of singularities (with the excep- 
tion of the trivial one for K1 or K 2 equal to oe) are consequences of the 
dimensional reduction that occurs on the variety (9). 

The second possibility for satisfying Eq. (8) is to impose the following 
condition on the parameters Ki: 

tanh(2K1) + tanh(2K 2) tanh(2K 3) 

1 

+ tanh(2K2) + tanh(2K3) tanh(2K1) 

1 

+ tanh(2K3) + tanh(2K1) tanh(2K2) - 0 (13) 

It can be shown that this is just the limit H = 0 of the solubility condition 
found in ref. 15 for the Kagom6 lattice Ising model with magnetic field. In 
contrast to (9), this equation does not factorize into a set of nonsymmetric 
conditions, and it does not impose a dimensional reduction on the system. 

It is evident that there are no solutions of Eq. (13) in the ferro- 
magnetic region, where K1, K2, and K 3 are positive. For the "physical" 
solutions of (13), the following cases are possible: (i) the three interactions 
are negative; (ii) one is positive and the other two are negative; (iii) one 
interaction is negative and the other two are positive. Hence, the system 
can be in the antiferromagnetic "frustrated" region [case (i)], or in a 
region of competing interactions with or within "frustration" [cases (iii) 
and (ii), respectively]. By contrast, when the disorder condition (9) is 
satisfied, the system is always "frustrated." 

Unfortunaly, the surface (13) has no intersection, for the physical 
(real) region of the parameter space, with the critical variety of the model. 
Taking into account (4), (6), and the explicit expression of fhoney(L1, L2, 
L3, H = 0 )  (see, for example, ref. 17), we finally obtain the following 
expression for 7~0.Kag on the surface (13): 
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)~0, K a g -  127~2 

A - B cos o l  - C cos 02 - D cos(c01 + 02) 
X dco l d o  2 

1 + C1 C2 C 3 - $ 2 S  3 c o s  (o I - $ 3 S  1 c o s  602 - S 1 S  2 cos(o . )  1 --}- (02) 

(14) 

where 

A = ( C  1 -~- C 2 C 3 ) ( C  1 - S 1 ) + ( C  2 -~- C 1 C 3 ) ( C  2 - 82)  -~- ( C  3 ~- C 1 C 2 ) ( C  3 - $3)  

B = ( C 1 - S , ) C ,  S2S3, C = ( C 2 - $ 2 ) C 2 8 3 S  1 , D = ( C 3 - $ 3 ) C 3 S I S 2  

(15 )  

with 

1 2e 2 sinh 2 2 K  i + 1 
Ci = cosh 2Li  = -~ ~2 

sinh 2K~ (1 + sinh 2 2K~) v2 

1 1 
Si = sin 2L  i - 

2 c~ sinh 2Ki (1 + (~2 sinh 2 2Ki)1/2 

(16) 

The integral expression (14) can be calculated in terms of elliptic functions 
of the first and third kinds, but the resulting expressions are very com- 
plicated, and do not give additional insight when compared to the integral 
representation. 

In general, if the initial susceptibility is known for the Kagom6 lattice, 
it can also be calculated for the honeycomb lattice and, in turn, for the 
triangular lattice. (For a review see ref. 17.) Unfortunately, the same 
mechanism that enables us to obtain expression (14) [condition (13)] rules 
out the possibility of extending our result to other two-dimensional lattices. 

Let us now return to the general case of the relation between )~o, Kag 
and XO.honcy, given by (4). From this equation, a relation can be obtained 
between Z0, Kag(K1, K2, K3) and ZO, Kag(K1, --K2, --K3). If we change M1 
by - M 1 ,  Eq. (4) becomes 

)(.o(K1, -- K2, - -  K 3 )  

1 3 1 ~ [  ] 
= 1 -- ~ ,~1 tanh2(2Mi) - 5 tanh2(2Mi) Ofh(Ll ,  L2,  L3,  H = O) 

"= i= 1 c~Li 

l 
+ ~ [ - tanh(2M1) + tanh(2M2) + tanh(2M3)] e ZO, honey(L1, L2, L3) 

(17) 
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where we have taken into account that L~, L2, and L 3 are invariant by the 
change of sign of M1. 

From Eqs. (4) and (17) it can be deduced that 

ZO, Kag(K1 , - - / s  -- K3) 

12~ 2 Jo Jo 

A - B cos ~1 -- C cos e) 2 - D cos(~o I + o32) 
• 

1 + C1 C2C3 --  $ 2 S  3 c o s  (D 1 - -  $ 3 S  1 c o s  (L) 2 - -  S I S  2 c o s ( ( . o  I "t- (2)2) 

x de) 1 d o )  2 + p)~0, K a g ( K 1 , / s  K3) ( 1 8 )  

where p is given by 

[ -  tanh(2Ml) + tanh(2M2) + tanh(2M3) ] 2 
P - [tanh(2M1) + tanh(2M2) + tanh(2M3)] 2 (19) 

This functional relation for Z0.Kag is valid for arbitrary values of K1, K2, 
K3, with the exception of the values that satisfy condition (7). If Kx, K2, 
K 3 are all positive and on the critical variety of the model, (18) enables us 
to obtain informatign on the critical behavior of the susceptibility on a 
region of competing interactions (the critical variety is invariant with 
respect to the change of sign of two of the three interaction parameters). It 
is deduced from Eq. (18) that the dominant singularity of ZO, Kag(KI, --K2, 
- K 3 )  is the same as that of XO, Kag(K1, K2, K3) , but the correction terms 
are different, owing to the contribution of the integral term in the right- 
hand side of (18). These contributions are of the form t ~log(t), where 
t = (To.- T)/T~. is the reduced temperature and n is an integer. 

To summarize, in this paper we have found exact expressions for the 
zero-field susceptibility of the anisotropic Kagom6 lattice Ising model. The 
first expression, given by (11), is valid on the disorder variety (12), and the 
second one, given by (14), holds on the variety defined by condition (13). 
Also, we have found a functional relation for X0,Kag, given by Eq. (18). This 
relation enables us to obtain information about the critical behavior of the 
susceptibility in a region of competing interactions of the parameter space 
of the model. 

APPENDIX.  SUSCEPTIBIL ITY OF THE KAGOMI~ LATTICE 
ISING M O D E L  ON THE DISORDER VARIETY 

In order to obtain the expression of the susceptibility on the disorder 
variety, we apply a local criterion, found be means of a decimation method, 
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in refs. 16 and 18. This local criterion can be stated as follows: when the 
following condition is satisfied 

2 W(Ol, 0"2, 0"3, 0-4, 0"5) =/~ (A1) 
0-1,0-2,0-3 

where 2 is a constant independent of 0"4 and o- 5, then the partition function 
per site in the thermodynamic limit is given by 

Z 1 / 3 N  = ,~1/3 (A2) 

Here, W(a~, a2, a3, 04, 0"5) is the Boltzmann weight associated to the 
elementary cell of the Kagom6 lattice shown in Fig. 1, and is given by 

W(0"1, 0"2, 0"3, 0"4, 0"5) 

= exp {K 1 (0 1 0-3 + 0-3 o-4) 

4" K2(0"2 0-3 Jr" (73 0-5) q- K3(0-10"2 -I- 0-40-5) 

q- H o "  3 -k- H/2(0-1 + 0-2 + 0" 4 ~- 0"5) 

+ H1(0-1 - 0"4) "-[- H2(0"2 - 0"5)} (A3) 

where H 1 and H 2 a r e  auxiliary fields that are canceled when the Boltzmann 
weights associated to all cells of the lattice are multiplied away. These 
auxiliary fields are introduced in order to verify condition (A1) with the 
minimal constraints on the parameters of the model. 

From (A1) and (A3), by giving all possibles values to a4 and 0-5, we 
obtain the following equations: 

cosh(2K1 + 2K2 + H)C 2K3 + 2H + cosh(H)e  2K3 + 2HI + 2H2 

2 
+ ~ cosh(2Ki + H ) e  H + 2/4j = 2 

i ~ j ; i : j =  1 

cosh(H)e  2x3- 2/4~ 2/42 -~ cosh(2K1 + 2K2 - H ) e  2x3 2/4 

2 
+ ~ cosh(2Ki-- H ) e  /4 2H/: .~ (A4) 

i ~ j ; i , j -  1 

cosh(2K1 - 2K2 + H ) e  2K3 + cosh(H)e-2~3+2/41 2/42 

+ cosh(2Kl + H)e/4 2/42 + cosh(2K2 _ H)e-/4+2/41 = )~ 

cosh(H)e  -2K3- 2HI + 2H2 -}- c o s h (  --2K1 + 2K2 + H ) e  -2K3 

+ cosh(2K2 + H)e/4 2/41 + cosh(2K1 - H ) e  -/4+2/42 = 2 
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The zero-field suscept ibi l i ty  is given by 

2 ~722/~H2 - (02/c~H) z H= o (A5) 
Zo, Kag = 3,~2 

Explici t  express ion for 2, 0 2 / ~ H ,  and 0 2 )~/c~H 2 can be found, for the case 
H =  0, from Eqs. (A4). After a very lengthly  a lgebra  we found the final 
express ion given by Eq. (12) in the text and  val id  on the var ie ty  (13). Othe r  
independen t  so lu t ions  can be ob ta ined  by  using the p e r m u t a t i o n  symmet ry  
of the mode l  with respect  to K1, K2, K3. This type  of d i so rde r  so lu t ion  is 
val id only for real values of the pa rame te r s  of the model ,  as is discussed in 
ref. 18. 
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